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Abstract 

Density-functional formalism is applied to study the phase equilibria in the U-Zr system. 

The obtained ground-state properties of the γ (bcc) and δ (C32) phases are in good 

agreement with experimental data. The decomposition curve for the γ-based U-Zr 

solutions is calculated. Our calculations confirm that experimentally observed “partial” 

ordering of the alloy components in the δ-UZr2 (AlB2) phase, in which Zr atoms occupy 

the “Al” position and the two “B” sites are randomly shared by the U and Zr atoms, is the 

most energetically favorable within the C32 structure.  We argue that stabilization of the 

δ-UZr2 phase relative to the α-Zr (hcp) structure is due to an increase of the Zr d-band 

occupancy that occurs when U is alloyed with Zr. A comparison with stabilization of the 

ω-phase (also C32) in Zr under compression is made. 
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1. Introduction 

Zr-based actinide alloys, particularly U-Pu-Zr, proved to be very promising fuels 

for liquid metal fast breeder reactors because of their advantage in view of superior 

performance, reactor safety, and fuel cycle economics [1]. The main goal of fast breeder 

reactors is to achieve a so-called “high burn-up” fissioning all types of transuranic 

elements, rather than only the “fissile” isotopes splitting in the thermal reactors, thus 

providing an appropriate solution to spent fuel recycling and complete transmutation of 

long-lived minor actinides (Np, Am, and Cm), which results in creation of a closed 

nuclear fuel cycle with future disposition of the nuclear waste products in a single 

geological repository [2]. Early on, metallic fuels (pure U and Pu) have been considered 

because of their high thermal conductivity (with the very significant safety benefits) in 

comparison with oxides fuels (e.g., UPuO2) used in thermal reactors. However, the low 

melting temperature of pure U, Pu, and the U-Pu alloys makes them unsuitable for high 

temperature applications due to the danger of penetration of molten actinides to the 

cladding.  That is why addition of some high-melting temperature elements, such as Cr, 

Mo, Ti, and Zr, is considered in order to boost the liquidus curve in the U-Pu system thus 

enhancing thermal and mechanical stability. However, zirconium metal also possesses a 

unique capability to suppress interdiffusion between the nuclear fuel and stainless-steel 

cladding and this makes Zr a good candidate as a solver to nuclear fuels for fast breeder 

reactors.  

In spite of the renewed interest in the Zr-based actinide alloys from the practical 

view point, very little has been done to understand fundamental aspects of phase 
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equilibria in these systems.  It was established [3] that the U-Zr system is characterized 

by the complete solubility of the body centered cubic high-temperature phases, γ-U and 

β-Zr, that is usually referred to in phase diagrams by ‘γ-phase’ solid solutions.  Below T 

≈ 995 K, these solutions separate into a relatively flat miscibility gap, which ranges from 

about 10 to 40 at. % of Zr, and spans about 30 K below the critical point. The 

intermediate δ-phase is formed on cooling from the γ-phase around UZr2 stoichiometry 

with the homogeneity range from 63 to 82 at. % Zr [4].  

Both γ- and δ- phases in the U-Zr system play an important role in metallurgical 

reactions that occur during the nuclear burn-up. A typical U-Zr fuel rod contains about 10 

wt. % of Zr (~ 23 at. %) in the γ-phase [5]. During the burn-up process, composition of U 

in the fuel rod decreases resulting in a subsequent increase of Zr composition. For 

example according to Ref. [6], the 5 at. % burn-up will cause the maximum Zr 

concentration to increase from ~ 23 at. % to ~ 45 at. %.  It will cause redistribution of Zr 

within the fuel rod with the porous highly Zr-enriched “hot” center, apparently dense Zr-

depleted intermediate zone, and slightly Zr-enriched “cold” outer zone [5, 6]. Diffusion 

data and thermodynamic properties of the U-Zr alloys are very important for 

understanding phenomena occurring in the fuel rods under irradiation. Ogata et al. [7] 

demonstrated that the interdiffusion coefficients of the γ-U-Zr solid solutions are closely 

related to the thermodynamic properties of this system. That is why in order to study 

redistribution of Zr in the U-Zr fuel rod one should perform, as the first step, ab initio 

calculations of the decomposition curve for the γ-U-Zr system, and calculate its basic 

ground-state properties. In this paper we present results of these calculations. 
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Another remarkable feature of the U-Zr system is the δ-UZr2 phase, which 

solidifies in a modified C32 (AlB2)-type crystal structure. It is well known that the high-

temperature Zr- or Ti-based solid solutions may transform into the so-called metastable 

ω-phase at low temperatures [8]. The ω-phase became a subject of numerous 

experimental and theoretical studies since it was discovered more than fifty years ago 

because of its unique technological applications.  This phase can also be stabilized from 

the α (hcp) phase of Zr (Ti) under compression [8, 9]. According to the X-ray and high 

resolution neutron diffraction structure analysis of the UZr2 compound [4, 10], Zr atom 

occupies the “Al” position (0, 0, 0) of the hexagonal cell in the (AlB2)-type crystal 

structure and a random mixture of U and Zr atoms occupies the “B” positions (⅔, ⅓, ½) 

and (⅓, ⅔, ½). Akabori et al. [11] performed interdiffusion coefficients measurements in 

the δ-UZr2 phase by means of an electron-probe micro-analyzer, and found them to be 

significantly smaller than those extrapolated from the γ-U-Zr solid solutions [7] to the δ-

phase. Finally, Ogawa et al. [12] suggested that the δ-UZr2 intermediate phase could be 

regarded as an ω-phase solid solution that is stabilized against the α-Zr (hcp) structure by 

addition of U due to increase of the Zr d-band occupancy. In this paper we present results 

of calculations of the ground-state properties of the δ-UZr2 phase and verified the 

hypothesis of this stabilization suggested in Ref. [12].   

In our calculations we employ three complementary computational techniques: (i) 

scalar-relativistic Green’s function technique based on the Korringa-Kohn-Rostoker 

(KKR) method within the atomic-sphere approximation (ASA), (ii) the scalar-relativistic 

exact muffin-tin orbital method (EMTO), and (iii) the all-electron full-potential linear 

muffin-tin orbital method (FPLMTO) that accounts for all relativistic effects. Pertinent 
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details of the computational methods are described in Section 2. Results of density-

functional calculations of the ground-state properties of the γ-based U-Zr solid solution 

and the decomposition curve are presented in Section 3. Section 4 is dedicated to the 

study of the δ-UZr2 phase. In Section 5 we revisit a hypothesis of δ-phase stabilization 

due to increase of the Zr-d-band occupancy in the U-Zr system. Lastly, concluding 

remarks are presented in Section 6.  

 

2. Computational details 

The calculations we have referred to as KKR-ASA are performed using the scalar 

relativistic (no spin-orbit coupling) Green’s function technique based on the KKR 

method within the atomic-sphere approximation [13-15]. Here ASA is improved by 

addition of higher multipoles of the charge density [15], and the so-called muffin-tin 

correction [16] to the electrostatic energy. The calculations are performed for a basis set 

including valence spdf orbitals and the semi-core 6p states for uranium whereas the core 

states are recalculated at every iteration (soft-core approximation). For the electron 

exchange and correlation energy functional, the generalized gradient approximation 

(GGA) is adopted [17]. Integration over the Brillouin zone is performed using the special 

k-point technique [18] with 506 and 576 points in the irreducible wedge of the zone for 

the bcc and hcp structure, respectively.  The moments of the density of states, needed for 

the kinetic energy and valence charge density, are calculated by integrating Green’s 

function over a complex energy contour (with a 2.5 Ry diameter) using a Gaussian 

integration technique with 30 points on a semi-circle enclosing the occupied states. The 
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equilibrium density of the U-Zr system is obtained from a Murnaghan [19] fit to about 

ten total energies calculated as a function of the lattice constant. 

In order to treat compositional disorder the KKR-ASA method is combined with 

the coherent potential approximation (CPA) [20]. The ground-state properties of the 

random U-Zr alloys are obtained from KKR-ASA-CPA calculations with the Coulomb 

screening potential and energy [21, 22]. The screening constants, α and β (see, for 

example, eq. (6) in Ref. [23]), are determined from supercell calculations using locally 

self-consistent Green’s function method (LSGF) [24]. For the U-Zr alloys the α and β 

screening constants are found to be 0.70 and 1.06, respectively. The effective cluster 

interactions (ECI), used in Monte Carlo (MC) simulations, are obtained from the 

screened generalized-perturbation method (SGPM) [21, 22, 25].  

Though the KKR-ASA formalism is well suited to treat close-packed structures it 

could produce a significant error when being applied to ‘open’ structures such as C32. 

That is why we use another Green’s function technique, based on the EMTO formalism, 

in present calculations, which is not limited by geometrical restrictions imposed by the 

ASA. 

The EMTO calculations are performed using scalar-relativistic Green’s function 

technique based on the improved screened KKR method, where the one-electron potential 

is represented by optimized overlapping muffin-tin (OOMT) potential spheres [26, 27].  

Inside the potential spheres the potential is spherically symmetric, and it is constant 

between the spheres. The radii of the potential spheres, the spherical potentials inside the 

spheres, and the constant value from the interstitial are determined by minimizing (i) the 

deviation between the exact and overlapping potentials, and (ii) the errors coming from 
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the overlap between spheres. Within the EMTO formalism, the one-electron states are 

calculated exactly for the OOMT potentials. As an output of the EMTO calculations, one 

can determine self-consistent Green’s function of the system and the complete, non-

spherically symmetric charged density. Finally, the total energy is calculated using the 

full charge-density technique [28]. Like in the case of KKR-ASA calculations, GGA is 

used for the electron exchange and correlation approximation, EMTO is combined with 

the CPA for calculation of the total energy of chemically random alloys; integrations over 

the Brillouin zone and complex energy contour, the choice of the screening constants are 

identical to those in the KKR-ASA method, except that, within the EMTO formalism, we 

can study the C32 structure and integration over the Brillouin zone for this structure is 

performed with 81 k-points in the irreducible wedge of the zone. 

For the elemental metals, the most accurate and fully relativistic calculations are 

performed using an all-electron approach where the relativistic effects, including spin-

orbit coupling, are accounted for. Although unable to model disorder in the CPA sense it 

provides important information for the metals, and also serves to confirm the CPA 

calculations mentioned above. For this purpose we use a version of the FPLMTO [29-

31]. The “full potential” in FPLMTO refers to the use of non-spherical contributions to 

the electron charge density and potential. This is accomplished by expanding the charge 

density and potential in cubic harmonics inside non-overlapping muffin-tin spheres and 

in a Fourier series in the interstitial region. We use two energy tails associated with each 

basis orbital, and for U’s semi-core 6s, 6p states and valence states (7s, 7p, 6d, and 5f) 

these pairs are different. With this ‘double basis’ approach we use a total of six energy 

tail parameters and a total of 12 basis functions per atom. Spherical harmonic expansions 
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are carried out up to lmax= 6 for the bases, potential, and charge density. As in the case of 

the KKR-ASA and EMTO methods, GGA is used for the electron exchange-correlation 

approximation. A special quasi-random structure (SQS) method was used to treat the 

compositional disorder within the FPLMTO formalism [32]. 

 

3. Ground-state properties and decomposition curve of the γ-U-Zr solid solutions 

Figures 1 (a-c) show results of KKR-ASA calculations of the equilibrium volume, 

Grüneisen constant, heat of formation of the γ-U-Zr solid solutions, as well as the bulk 

modulus and Debye temperature. The lattice vibration effects are accounted for within 

the so-called Debye-Grüneisen quasi-harmonic model [33, 34] and here evaluated at 300 

K. Both equilibrium volume and heat of formation of the γ-U-Zr solid solutions show a 

positive deviation from Vegard’s law that agrees well with the existence of a miscibility 

gap in the U-Zr phase diagram. One should notice that calculated heats of mixing of the 

γ-U-Zr solid solutions are in excellent agreement with data extracted from the 

experimental phase diagram by the use of CALPHAD methodology [35], which indicates 

the robustness of the ab initio approach used in the present calculations. For comparison, 

we also show the heats of formation of the γ-U-Zr for the U75Zr25, U50Zr50, and U25Zr75 

alloys calculated within FPLMTO-SQS technique. 

We performed MC calculations of the decomposition curve for the γ-U-Zr solid 

solutions. Calculations are performed with an Ising-type representation of chemical order 

within the canonical ensemble. The MC simulations are performed using the Metropolis 

algorithm [36] for a 1728-site simulation box (12•12•12) with periodic boundary 

conditions. Set of pair (V2), 3-site (V3), and 4-site (V4) ECI are obtained from SGPM 
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calculations performed at the theoretical equilibrium lattice constant (see Figure 1) for 

each composition of γ-U(1-c)Zrc alloys under consideration. For example, the calculated 

lattice parameter for the γ-U30Zr70 alloy is 3.588 Å that coincides with the experimental 

measured value of 3.589 Å at the γ-δ transition temperature T = 925 K [10]. The 

proximity of the calculated lattice constant of the γ-U-Zr alloys, used for the 

determination of ECI for subsequent MC simulations, and actual values of the lattice 

constant, measured in the vicinity of the decomposition of the γ-phase, indicates a good 

chance of successfully reproducing this phase transformation with our simulations. 

Figure 2 shows the first nine effective pair interactions (EPI) calculated for the γ-U1-

cZrc alloys. A significant negative value of the 1st and 2nd nearest-neighbor EPI’s suggests 

a strong tendency toward phase separation in this system. Figure 3 shows the total energy 

per atom and its temperature derivative obtained from MC simulations for the γ-U90Zr10 

alloy. This plot also indicates the critical temperature of the phase transformation, Tc, in 

this alloy. 

Figure 4 displays the calculated temperature of decomposition of the γ-U1-cZrc alloys 

within the wide range of composition. This curve has a maximum that is located 

somewhere between 20 and 30 at. % of Zr. This maximum matches relatively well the 

location of the maximum on the experimental miscibility gap (~ 30 at.  % Zr) also shown 

in the figure. However, calculated temperature of decomposition of the γ-U-Zr solid 

solutions significantly exceeds the experimental value of the miscibility gap. To explain 

this discrepancy, we show calculated temperature dependence of the heat of formation of 

these solutions in Figure 5. A significant decrease of the heat of formation with 

temperature implies that the temperature dependence of the ECI should be accounted for 
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in our MC simulations. This temperature dependence is considered within the following 

simple scheme [38]. Let us introduce the excess vibrational free energy for the AcB(1-c) 

alloy 

  

 ( )vibr. vibr. vibr. vibr.
alloy alloy A BF F cF 1 c F⎡ ⎤∆ = − + −⎣ ⎦ ,      (1) 

 

where c is the composition in A species. Within the regular solution approximation 

 

 ( )vibr.
alloyF c 1 c P,∆ = −         (2) 

 

and the coefficient P is associated with the EPI (for simplicity), 2
iV , on the ith 

coordination sphere: 

 

 2
i i

i

1P Z V
2

= − ∑ ,        (3) 

 

where Zi refers to a coordination number. If, for simplicity, the only 1st coordination shell 

is considered, one has 

 

 2
1 1

1P Z V
2

= − ,         (4)  
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where 1Z  and 2
1V are the coordination number and the EPI associated with the 1st 

coordination shell, respectively. Thus, from Esq. (2) and (4) one can get the vibrational 

contribution of the nearest-neighbor EPI to the free energy according to 

 

 ( )vibr. 2
alloy 1 1

1F c 1 c Z V
2

∆ = − − .      (5) 

 

Using eq. (1) for the excess vibrational free energy for the AcB(1-c) alloy, one can 

estimate the ‘thermal’ correction to the nearest-neighbor EPI. 

Figure 6 shows the temperature dependence of the nearest-neighbor EPI calculated 

for several alloy compositions of γ-U-Zr. This correction substantially decreases the 

calculated temperature of the decomposition of γ-U-Zr alloys (see Figure 4) in 

comparison with the previously discussed MC results performed without thermal 

correction to the EPI’s. One should also mention that the calculated transition 

temperature, Tc ≈ 1020 K, for the γ-U90Zr10 alloy, shown in Figure 3, corresponds to MC 

simulations performed with the thermally corrected nearest-neighbor EPI. Thermal 

effects associated with the next-neighbor EPI’s should cause further decrease of the 

calculated decomposition curve. 

 

4. Ground-state properties of the δ-UZr2 compound 

Figure 7 shows the C32 (AlB2) structure. It has two non-equivalent types of sublattice 

with 3 atoms per unit cell: sublattices of “Al-” (one site) and “B-” (two sites) types. The 

actual arrangement of U and Zr atoms in δ-UZr2 phase, has been widely discussed, see, 
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e.g., Refs. [3, 4], and the last uncertainties were removed by careful high-resolution 

neutron diffraction measurements [10]. As we mentioned in the Introduction, it is now 

believed that in the δ-UZr2 compound Zr atoms occupy the Al-type position (0, 0, 0) of 

the hexagonal cell, and a random mixture of U and Zr atoms occupies the B-type 

positions (⅔, ⅓, ½) and (⅓, ⅔, ½). To confirm that this arrangement is actually the 

ground-state configuration of the δ-UZr2 compound, we performed EMTO calculations 

of the equilibrium lattice constant for three atomic configurations of the C32 structure: (i) 

random distribution of U and Zr atoms on each of the three sites (the U⅓Zr⅔ “disordered” 

alloy); (ii) “complete’ ordering with U atoms occupying the Al-type sublattice  and Zr 

atoms occupying the B-type sublattice; (iii) “partial” ordering that corresponds to 

experimental observation described above. Figure 8 shows the total energy of the δ-UZr2 

compound, in 3 configurations, (i) – (iii), as a function of the Wigner-Seitz radius. One 

can see that the two types of ordering, “complete” and “partial”, are energetically 

favorable in comparison with the disordered configuration, however, a) the configuration 

(iii) has the lowest total energy (ground-state) and b) the equilibrium lattice constant for 

the configuration (ii) significantly exceeds the experimentally observed lattice parameter 

of the δ-UZr2 compound [4]. Indeed, according to Table 5 of Ref. [4], the experimental 

lattice parameters for the δ-UZr2 compound with 66.9 at. % Zr are: a = 5.025 Å and c = 

3.086 Å, which corresponds to the volume of the unit cell 2 3V = a c = 67.4837
2

 Å3 and 

the volume per atom VΩ= = 22.4946
3

 Å3 resulting in the Wigner-Seitz radius 

3
WS

3ΩS = = 1.7512
4π

Å=3.3093 a.u.. According to our calculations, the equilibrium 
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Wigner-Seitz radius is 3.317 a.u., 3.375 a.u., and 3.295 a.u., for configurations (i), (ii), 

and (iii), respectively, which strongly suggests that configurations (i) and (iii), described 

within EMTO formalism, are most realistic.  

We have also calculated the enthalpy of formation of the δ-UZr2 compound. We 

define this property as 

 

2

C32
f UZr U Zr

1 2H E E E
3 3

α α⎡ ⎤∆ = − +⎢ ⎥⎣ ⎦
,       (6)  

 

where 
2

C32
UZrE is the energy of the δ-UZr2 compound and α

UE  and α
ZrE are the energies of α-U 

and α-Zr, respectively. Present calculations reveal 
2

C32
UZrE = - 6.29 kJ/mol that is in fair 

agreement with experimental measurements of - 4.0 kJ/mol at T = 298 K [39, 40]. 

 

5. Stability of the δ-phase in the U-Zr system 

It is well established that under compression zirconium metal undergoes the 

following phase transformations: α-Zr (hcp) → ω-Zr (C32) → β-Zr (bcc) [8, 9, 41-43]. 

We performed FPLMTO calculations of the total energy of α-, ω-, and β-Zr phases as 

functions of atomic volume and results of these calculations are shown in Figure 9. 

According to the present calculations, the α → ω and ω → β phase transitions in Zr take 

place at 33 and 268 kbar, respectively, which are in a good accord with experimental 

measurements (see Table). One should also notice the significant scattering of the 

experimental data, especially for the α → ω transition.  
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Figure 10 (a) shows the s-, p-, and d-band occupations in α-Zr as a function of the 

Wigner-Seitz radius (FPLMTO calculations). As the Wigner-Seitz radius decreases (e.g., 

with increase of pressure), the occupation of the d-band goes up due to a loss of the s and 

p electrons. In Figure 10 (b) we show the structural-energy difference obtained from 

canonical bands [44] as a function of d-band filling. One can see that as soon as the Zr d-

band occupation increases under compression, hcp gradually transforms, initially to C32, 

and then to bcc. For the C32 (ω) phase, this plot is very different than that published by 

Ahuja et al. [45]. The reason for the difference is that the present results in Figure 10 (b) 

are obtained from canonical band energies with the repulsive contribution, due to 

overlapping orbitals, included. This contribution becomes increasingly important for 

open crystal structures (such as C32) [46] and was not included in Ref. [45]. 

Next, we discuss the analogies with the U-Zr system. Figure 11 has two parts. The 

upper part shows how the d-band occupation of α-Zr changes under compression, and the 

transition region (full black) spans betweens the lower and upper experimental bounds, 

21 kbar and 85 kbar (see Table), of the α → ω transformation. The hatched patch of the 

upper part of the plot shows the pressure region of the certain ω-phase stability in pure 

Zr. The lower part of this plot shows how the d-band occupation of changes as a function 

of an increase in U composition in the U-Zr system. The hatched part of this part of the 

plot spans within the range of the homogeneity of the δ-U-Zr phase (18 – 37 at. % U [4]). 

One can see that at the upper pressure border of the α → ω  phase transition range in pure 

Zr (~ 85 kbar) its d-occupation almost reaches the same value as it has when composition 

of U, alloyed with α-Zr, reaches the value (~ 18 at. %, [4]) when the δ-UZr2 phase starts 

to form. Thus the present calculations confirm the hypothesis of Ref. [12] according to 
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which the stabilization of the δ-UZr2 phase in the U-Zr system has the same origin as that 

of the ω-phase in pure zirconium under compression, namely, it is induced by an increase 

in d-band filling. 

 

6. Conclusion. 

Due to progressive use of metallic fuels in fast breeder reactors it becomes very 

important to understand factors that shape performance of these fuels. There are a lot of 

factors that determine materials performance, e.g., degree of fuel swelling due to fission 

products and transmutant elements, swelling due to irradiation damage and gas release, 

fuel-cladding mechanical and chemical interactions, fuel constituent redistribution and 

zone formation, fuel volume change due to element segregation and phase change, 

changes to coefficients of thermal expansion, lanthanide fission product migration, 

redistribution of minor actinides, mechanical integrity (development of cracks and voids), 

etc. [1]. To study these complex phenomena it is important, first of all, to predict the 

thermodynamic properties of actinide-based materials used in fast breeder reactors, e.g., 

U-Pu-Zr (base material), solutes (Np, Am, Cm), as well as transition metals (Mo, Ta, W) 

for subsequent studies of fuel cladding interaction. The phenomenological thermo-

chemical CALPHAD approach [35] is the available tool in alloy processing modeling 

with wide predictive capabilities.  By integrating CALPHAD methodology with ab initio 

technique one can efficiently predict the thermodynamic properties of actinides and their 

alloys with further studies on mechanical and chemical stabilities of metallic fuels, and 

aging, corrosion, and wear resistance properties.  
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In the present paper ab initio results on equilibrium properties are obtained for U-Zr 

alloys to understand the effectiveness of ab initio methods in describing actinide alloys. 

Ground-state properties of γ-U-Z solid solutions and the δ-UZr2 compound were 

calculated. Predicted temperature of decomposition of γ-U-Zr alloys is in a reasonable 

agreement with the γ-phase miscibility gap. Stabilization of the δ-UZr2 phase in the U-Zr 

system is explained in terms of an increase in d-band occupancy by the addition of U to 

Zr. These ab initio results will be used to build a completely theoretical phase diagram 

that can be compared with experimental and CALPHAD phase diagrams. This will serve 

as a template to investigate a mixture of U and Pu with minor actinides for which 

experimental data are lacking. In a near future, this improved and validated coupling 

between ab initio and CALPHAD methodologies will allow us to predict the 

thermodynamic driving force, associated with any actinide-based alloy, and this will be 

used as an input for predicting microstructure evolution and site redistribution, and 

validate the development of the phenomenological potentials for subsequent molecular 

dynamics simulations. 
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Captions 

Figure 1. The bulk modulus and Debye temperature (a); the heat of formation (b); the 

atomic volume and Grüneisen constant (c) of the γ-U-Zr alloys. 

Figure 2.The first nine effective pair interactions for the γ-U-Zr alloys. 

Figure 3. The total energy and its temperature derivative as a function of temperature in 

Ising-type MC simulations of the γ-U-Zr alloys. 

Figure 4. Temperature of decomposition of the γ-U-Zr alloys. Experimental data on the 

miscibility gap are taken from Ref. [37]. 

Figure 5. Temperature dependence of the heat of formation of the γ-U-Zr alloys. 

Figure 6. Temperature dependence of the nearest neighbor coordination shell interaction 

for the γ-U-Zr alloys. 

Figure 7. The C32 (AlB2) structure. Al-type and B-type atoms are colored dark and light 

grey, respectively. 

Figure 8. The total energy of the δ-UZr2 compound for (i) - (iii) configurations (see text) 

as a function of the Wigner-Seitz radius. The equilibrium energy of the “partially’ order 

configuration  is used as the reference point and is set equal to zero. 

Figure 9. The total energy of hcp, C32, and bcc Zr as a function of the atomic volume. 

Figure 10. The change in band occupancy in Zr under compression (a); the energy 

difference, obtained from canonical d-bands, as a function of d-band occupancy (b). The 

hcp energy is used as the reference point and is set equal to zero. 

Figure 11. Comparison of d-band occupancy in α-Zr as a function of compression with d-

band occupancy in the U-Zr alloys as a function of U concentration. 
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Table. Experimental and theoretical (FPLMTO) pressure of the α → ω and ω → β phase 

transitions in Zr. 

Source α → ω transition (kbar) Source ω→β transition (kbar) 

Ref. [8] 21 - 60 Ref. [9] 320 

Ref. [41] 33 - 67 Ref. [42] 330 

Ref. [43] 23 - 85 Ref. [43] 240 - 310 

FPLMTO 33 FPLMTO 268 
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Figures. 
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Figure 1a. 
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